Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Pathol ; 193(6): 690-701, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2312845

RESUMO

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.


Assuntos
COVID-19 , Doenças Vasculares , Cricetinae , Animais , Humanos , Mesocricetus , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Doenças Vasculares/patologia , Modelos Animais de Doenças
2.
The American journal of pathology ; 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2251051

RESUMO

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human COVID-19 disease. Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in COVID-19 patients. Here, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19 disease. The results show that regions of active pulmonary inflammation in SARS-CoV-2 infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2 inoculated hamsters are likely due to endothelial damage followed by platelet and macrophage infiltration.

3.
J Orthop Res ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2262435

RESUMO

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.

4.
J Craniofac Surg ; 33(5): 1300-1302, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2008691

RESUMO

ABSTRACT: To report 2 successfully managed cases of graft rejection with acellular porcine corneal stroma (APCS) transplantation in patients with fungal corneal ulcer. Two patients were diagnosed with fungal corneal ulcer and received APCS transplantation. Graft rejection developed due to the lost follow-up during the period of coronavirus disease 2019 outbreak. Amniotic membranes transplantation and cauterization of neovascularization was performed, respectively. The graft failure resolved successfully after the procedure. To the best of our knowledge, amniotic membranes transplantation and cauterization of new vessels are the firstly reported in treating APCS graft failure. Amniotic membranes transplantation or cauterization of neovascularization appear to be a safe and costeffective method for treating graft failure.


Assuntos
COVID-19 , Transplante de Córnea , Úlcera da Córnea , Animais , Substância Própria/transplante , Transplante de Córnea/métodos , Rejeição de Enxerto , Pandemias , Suínos
5.
The Journal of craniofacial surgery ; 33(5):1300-1302, 2021.
Artigo em Inglês | EuropePMC | ID: covidwho-1939919

RESUMO

: To report 2 successfully managed cases of graft rejection with acellular porcine corneal stroma (APCS) transplantation in patients with fungal corneal ulcer. Two patients were diagnosed with fungal corneal ulcer and received APCS transplantation. Graft rejection developed due to the lost follow-up during the period of coronavirus disease 2019 outbreak. Amniotic membranes transplantation and cauterization of neovascularization was performed, respectively. The graft failure resolved successfully after the procedure. To the best of our knowledge, amniotic membranes transplantation and cauterization of new vessels are the firstly reported in treating APCS graft failure. Amniotic membranes transplantation or cauterization of neovascularization appear to be a safe and costeffective method for treating graft failure.

6.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1808578

RESUMO

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Macaca mulatta , RNA Viral , Soroterapia para COVID-19
7.
Environ Pollut ; 300: 118932, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1664904

RESUMO

Air pollution is becoming serious in developing country, and how to quantify the role of local emission and/or meteorological factors is very important for government to implement policy to control pollution. Here, we use a random forest model, a machine learning (ML) approach, combined with a de-weather method to analyze the PM2.5 level during the COVID-19 outbreak in Hubei Province. The results show that changes in anthropogenic emissions have reduced PM2.5 concentrations in February and March 2020 by about 33.3% compared to the same period in 2019, while changes in meteorological conditions have increased PM2.5 concentrations by about 8.8%. Moreover, the impact of meteorological conditions is more significant in the central region, which is likely to be related to regional transport. After excluding the contribution of meteorological conditions, the PM2.5 concentration in Hubei Province in February and March 2020 is lower than the secondary standard of China (35 µ g/m3). Our estimates also indicate that under similar meteorological conditions as in February and March 2019, an emission reduction intensity equivalent to about 48% of the emission reduction intensity during the lockdown may bring the annual average PM2.5 concentration to the standard (35 µ g/m3). Our study shows that machine learning is a powerful tool to quantify the influencing factors of PM2.5, and the results further emphasize the need for scientific emission reduction as well as joint regional control measures in future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis , Surtos de Doenças , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Meteorologia , Material Particulado/análise , SARS-CoV-2
8.
Chin J Nat Med ; 19(9): 693-699, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1576003

RESUMO

A chemical investigation on the fermentation products of Sanghuangporus sanghuang led to the isolation and identification of fourteen secondary metabolites (1-14) including eight sesquiterpenoids (1-8) and six polyphenols (9-14). Compounds 1-3 were sesquiterpenes with new structures which were elucidated based on NMR spectroscopy, high resolution mass spectrometry (HRMS) and electronic circular dichroism (ECD) data. All the isolates were tested for their stimulation effects on glucose uptake in insulin-resistant HepG2 cells, and cellular antioxidant activity. Compounds 9-12 were subjected to molecular docking experiment to primarily evaluate their anti-coronavirus (SARS-CoV-2) activity. As a result, compounds 9-12 were found to increase the glucose uptake of insulin-resistant HepG2 cells by 18.1%, 62.7%, 33.7% and 21.4% at the dose of 50 µmol·L-1, respectively. Compounds 9-12 also showed good cellular antioxidant activities with CAA50 values of 12.23, 23.11, 5.31 and 16.04 µmol·L-1, respectively. Molecular docking between COVID-19 Mpro and compounds 9-12 indicated potential SARS-CoV-2 inhibitory activity of these four compounds. This work provides new insights for the potential role of the medicinal mushroom S. sanghuang as drugs and functional foods.


Assuntos
Agaricales , Tratamento Farmacológico da COVID-19 , Polifenóis , Sesquiterpenos , Antioxidantes/farmacologia , Basidiomycota , Glucose , Humanos , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , SARS-CoV-2 , Sesquiterpenos/farmacologia
9.
Cell Rep ; 37(5): 109942, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1471904

RESUMO

Anti-viral monoclonal antibody (mAb) treatments may provide immediate but short-term immunity from coronavirus disease 2019 (COVID-19) in high-risk populations, such as people with diabetes and the elderly; however, data on their efficacy in these populations are limited. We demonstrate that prophylactic mAb treatment blocks viral replication in both the upper and lower respiratory tracts in aged, type 2 diabetic rhesus macaques. mAb infusion dramatically curtails severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated stimulation of interferon-induced chemokines and T cell activation, significantly reducing development of interstitial pneumonia. Furthermore, mAb infusion significantly dampens the greater than 3-fold increase in SARS-CoV-2-induced effector CD4 T cell influx into the cerebrospinal fluid. Our data show that neutralizing mAbs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.


Assuntos
Anticorpos Monoclonais/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Envelhecimento/imunologia , Animais , COVID-19/líquido cefalorraquidiano , COVID-19/complicações , COVID-19/imunologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/virologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Feminino , Humanos , Ativação Linfocitária , Macaca mulatta , Masculino , Neurite (Inflamação)/imunologia , Neurite (Inflamação)/prevenção & controle , Profilaxia Pré-Exposição , Linfócitos T/imunologia , Replicação Viral/imunologia
10.
Vaccines (Basel) ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1335258

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular immune response has been shown to play a critical role in preventing severe illness or death in patients infected with SARS-CoV-2 or its variants. Given the multiple T-cell epitopes shared by wild-type virus and its variants, we hypothesized that vaccines that target multiple T-cell epitopes of SARS-CoV-2 may provide a "universal protection" against the wild-type virus as well as its variants, even the heavily mutated ones. To test this, we assessed SARS-CoV-2-specific T-cell precursors in healthy individuals using overlapping peptide pools of SARS-CoV-2 structural and functional proteins, including spike (S), membrane (M), envelope (E), nucleocapsid (N), and protease (P) proteins as target antigens. Diverse T-cell precursor frequencies specific to these viral antigens were detected in healthy individuals, including high, medium, low, and no responders. This was further confirmed by efficient induction of anti-SARS-CoV-2 T-cell immune responses using ex vivo dendritic cell (DC)/T cell coculture. The results demonstrated T-cell responses consistent with the precursor frequencies of each of the individuals tested. Importantly, the combination of all five viral peptide pools induced the strongest cellular immune response, and further, after a DC-peptides re-stimulation, even the no responders developed an increased anti-viral T-cell response. These analyses recapitulate the presence of a broad anti-SARS-CoV-2 cellular immunity even in an immune naïve population, which could be enhanced by antigen presenting cells presenting the overlapping antigenic peptides. Given the critical role of cellular immunity in COVID-19 protection, these results have important implications for vaccine design and immunotherapy in fighting SARS-CoV-2 and its variants.

11.
Front Public Health ; 9: 646780, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1256408

RESUMO

Background: The COVID-19 pandemic is a significant health threat. Health care worker (HCWs) are at a significant risk of infection which may cause high levels of psychological distress. The aim of this study was to investigate the psychological impact of the COVID-19 on HCWs and factors which were associated with these stresses during the first outbreak in Shanghai. Methods: Between February 9 and 21, 2020, a total of 3,114 frontline HCWs from 26 hospitals in Shanghai completed an online survey. The questionnaire included questions on their sociodemographic characteristics, 15 stress-related questions, and General Health Questionnaire-12 (GHQ-12). Exploratory factor analysis was applied to the 15 stress-related questions which produced four distinct factors for evaluation. Multiple linear regression models were performed to explore the association of personal characteristics with each score of the four factors. Binary logistic analysis was used to explain the association of personal characteristics and these four factors with the GHQ-12. Results: There were 2,691 valid surveys received. The prevalence of emotional distress (defined as GHQ-12 ≥ 12) was noted in 47.7% (95%CI:45.7-49.6%) HCWs. Females (OR = 1.43, 95%CI:1.09-1.86) were more likely to have a psychological distress than males. However, HCWs who work in secondary hospitals (OR = 0.71, 95% CI:0.58-0.87) or had a no contact history (OR = 0.45, 95%CI: 0.35-0.58) were less likely to suffer psychological distress. HCWs who were nurses, married, and had a known contact history were highly likely to have anxiety. HCWs working at tertiary hospitals felt an elevated anxiety regarding the infection, a lack of knowledge, and less protected compared to those who worked at secondary hospitals. Conclusions: Our study shows that the frontline HCWs had a significant psychosocial distress during the COVID-19 outbreak in Shanghai. HCWs felt a lack of knowledge and had feelings of being not protected. It is necessary for hospitals and governments to provide additional trainings and psychological counseling to support the first-line HCWs.


Assuntos
COVID-19 , Pandemias , China/epidemiologia , Estudos Transversais , Surtos de Doenças , Feminino , Pessoal de Saúde , Humanos , Masculino , SARS-CoV-2
12.
Nature ; 591(7850): 451-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1075231

RESUMO

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Administração Oral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/imunologia , Quimioprevenção , Quirópteros/virologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Citidina/administração & dosagem , Citidina/uso terapêutico , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Transplante de Pulmão , Masculino , Camundongos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral
13.
Res Sq ; 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: covidwho-806978

RESUMO

All known recently emerged human coronaviruses likely originated in bats. Here, we used a single experimental platform based on human lung-only mice (LoM) to demonstrate efficient in vivo replication of all recently emerged human coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) and two highly relevant endogenous pre-pandemic SARS-like bat coronaviruses. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats harbor endogenous coronaviruses capable of direct transmission into humans. Further detailed analysis of pandemic SARS-CoV-2 in vivo infection of LoM human lung tissue showed predominant infection of human lung epithelial cells, including type II pneumocytes present in alveoli and ciliated airway cells. Acute SARS-CoV-2 infection was highly cytopathic and induced a robust and sustained Type I interferon and inflammatory cytokine/chemokine response. Finally, we evaluated a pre-exposure prophylaxis strategy for coronavirus infection. Our results show that prophylactic administration of EIDD-2801, an oral broad spectrum antiviral currently in phase II clinical trials for the treatment of COVID-19, dramatically prevented SARS-CoV-2 infection in vivo and thus has significant potential for the prevention and treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA